Example Locations

# Locations at various latitudes
world_pts <- cbind(
  lon = c(151.21, 0, -74.01, 0, 0),
  lat = c(-33.87, 51.51, 40.71, 0, -90)
)
rownames(world_pts) <- c("Sydney", "London", "New York", "Equator/Prime", "South Pole")

# Antarctic stations
antarctic <- cbind(
  lon = c(166.67, 77.85, -68.13, 39.58, 0),
  lat = c(-77.85, -67.60, -67.57, -69.41, -90)
)
rownames(antarctic) <- c("McMurdo", "Davis", "Palmer", "Progress", "South Pole")

Geocentric (ECEF) Coordinates

Earth-Centered Earth-Fixed (ECEF) coordinates express positions as X, Y, Z relative to the Earth’s center:

  • X-axis: Points toward 0°N, 0°E (intersection of equator and prime meridian)
  • Y-axis: Points toward 0°N, 90°E (intersection of equator and 90°E)
  • Z-axis: Points toward the North Pole

Basic Conversion

geocentric_fwd(world_pts)
#>          X        Y        Z    lon    lat h
#> 1 -4646017  2553114 -3534483 151.21 -33.87 0
#> 2  3977778        0  4969055   0.00  51.51 0
#> 3  1333729 -4654333  4138065 -74.01  40.71 0
#> 4  6378137        0        0   0.00   0.00 0
#> 5        0        0 -6356752   0.00 -90.00 0

Understanding ECEF

# Points on the equator have Z ≈ 0
equator_pts <- cbind(
  lon = c(0, 90, 180, -90),
  lat = c(0, 0, 0, 0)
)
geocentric_fwd(equator_pts)
#>          X        Y Z lon lat h
#> 1  6378137        0 0   0   0 0
#> 2        0  6378137 0  90   0 0
#> 3 -6378137        0 0 180   0 0
#> 4        0 -6378137 0 -90   0 0

# Points at poles have X ≈ 0, Y ≈ 0
pole_pts <- cbind(lon = c(0, 0), lat = c(90, -90))
geocentric_fwd(pole_pts)
#>   X Y        Z lon lat h
#> 1 0 0  6356752   0  90 0
#> 2 0 0 -6356752   0 -90 0

Height Above Ellipsoid

ECEF can include height above the WGS84 ellipsoid:

# Ground level vs airplane altitude (10km) vs satellite (400km)
pt <- c(151.21, -33.87)

data.frame(
  location = c("Ground", "Aircraft (10km)", "ISS (~400km)", "GPS satellite (~20200km)"),
  h = c(0, 10000, 400000, 20200000),
  geocentric_fwd(cbind(rep(pt[1], 4), rep(pt[2], 4)), 
                 h = c(0, 10000, 400000, 20200000))
)
#>                   location        h         X        Y         Z    lon    lat
#> 1                   Ground        0  -4646017  2553114  -3534483 151.21 -33.87
#> 2          Aircraft (10km)    10000  -4653294  2557113  -3540056 151.21 -33.87
#> 3             ISS (~400km)   400000  -4937086  2713064  -3757407 151.21 -33.87
#> 4 GPS satellite (~20200km) 20200000 -19344970 10630591 -14792154 151.21 -33.87
#>        h.1
#> 1        0
#> 2    10000
#> 3   400000
#> 4 20200000

Antarctic Stations in ECEF

# Antarctic stations are all near the "bottom" of the coordinate system
geocentric_fwd(antarctic)
#>            X          Y        Z    lon    lat h
#> 1 -1310449.4   310501.7 -6213433 166.67 -77.85 0
#> 2   513025.6  2382902.9 -5874236  77.85 -67.60 0
#> 3   909126.8 -2264950.0 -5872961 -68.13 -67.57 0
#> 4  1733893.8  1433382.5 -5948210  39.58 -69.41 0
#> 5        0.0        0.0 -6356752   0.00 -90.00 0

# Note the large negative Z values (Southern Hemisphere)
# and relatively small X, Y values (near the axis)

Round-trip Conversion

fwd <- geocentric_fwd(world_pts)
rev <- geocentric_rev(fwd$X, fwd$Y, fwd$Z)

# Verify accuracy
max(abs(rev$lon - world_pts[,1]))
#> [1] 0
max(abs(rev$lat - world_pts[,2]))
#> [1] 1.421085e-14
max(abs(rev$h))  # Height should be ~0
#> [1] 1.409644e-09

GPS Applications

ECEF is the native coordinate system for GPS satellites:

# Convert GPS receiver position to geodetic
# (Example: receiver at Sydney at ~100m altitude)
X <- 4648241   # meters
Y <- -2560342
Z <- -3526276

geocentric_rev(X, Y, Z)
#>         lon       lat         h       X        Y        Z
#> 1 -28.84683 -33.78127 -55.64177 4648241 -2560342 -3526276

Local Cartesian (ENU) Coordinates

Local Cartesian, also called ENU (East-North-Up), creates a local coordinate system with:

  • East: Positive X direction
  • North: Positive Y direction
  • Up: Positive Z direction

This is ideal for local surveys, robotics, and navigation.

Basic Conversion

# Set up local system centered on Sydney
sydney <- c(151.21, -33.87)

nearby_pts <- cbind(
  lon = c(151.21, 151.31, 151.11, 151.21, 151.21),
  lat = c(-33.87, -33.87, -33.87, -33.77, -33.97)
)
rownames(nearby_pts) <- c("Origin", "East 10km", "West 10km", "North 10km", "South 10km")

localcartesian_fwd(nearby_pts, lon0 = sydney[1], lat0 = sydney[2])
#>               x             y         z    lon    lat h
#> 1  0.000000e+00      0.000000  0.000000 151.21 -33.87 0
#> 2  9.252524e+03     -4.499921 -6.704168 151.31 -33.87 0
#> 3 -9.252524e+03     -4.499921 -6.704168 151.11 -33.87 0
#> 4  5.275069e-11  11091.908279 -9.679492 151.21 -33.77 0
#> 5 -2.150955e-10 -11092.088563 -9.679702 151.21 -33.97 0

Local Survey Application

# Survey points around McMurdo Station
mcmurdo <- c(166.67, -77.85)

survey_pts <- cbind(
  lon = c(166.67, 166.70, 166.64, 166.67, 166.73),
  lat = c(-77.85, -77.85, -77.85, -77.84, -77.86)
)
rownames(survey_pts) <- c("Base", "Point A", "Point B", "Point C", "Point D")

result <- localcartesian_fwd(survey_pts, lon0 = mcmurdo[1], lat0 = mcmurdo[2])
result
#>               x            y          z    lon    lat h
#> 1  0.000000e+00     0.000000  0.0000000 166.67 -77.85 0
#> 2  7.051476e+02    -0.180472 -0.0388546 166.70 -77.85 0
#> 3 -7.051476e+02    -0.180472 -0.0388546 166.64 -77.85 0
#> 4 -1.907097e-11  1116.439380 -0.0974277 166.67 -77.84 0
#> 5  1.409152e+03 -1117.161493 -0.2527202 166.73 -77.86 0

# Distances from base in meters
data.frame(
  point = rownames(survey_pts),
  east_m = round(result$x),
  north_m = round(result$y),
  distance_m = round(sqrt(result$x^2 + result$y^2))
)
#>     point east_m north_m distance_m
#> 1    Base      0       0          0
#> 2 Point A    705       0        705
#> 3 Point B   -705       0        705
#> 4 Point C      0    1116       1116
#> 5 Point D   1409   -1117       1798

Including Height

# Local system with height differences
# Simulating a hill near Sydney
pts_with_height <- cbind(
  lon = c(151.21, 151.22, 151.20),
  lat = c(-33.87, -33.87, -33.86)
)
heights <- c(0, 50, 100)  # meters above ellipsoid

result <- localcartesian_fwd(pts_with_height, 
                              lon0 = 151.21, lat0 = -33.87, h0 = 0,
                              h = heights)
result
#>           x             y        z    lon    lat   h
#> 1    0.0000    0.00000000  0.00000 151.21 -33.87   0
#> 2  925.2601   -0.04499957 49.93296 151.22 -33.87  50
#> 3 -925.3752 1109.17194197 99.83615 151.20 -33.86 100

Round-trip Conversion

pts <- cbind(
  lon = c(166.67, 166.70, 166.64),
  lat = c(-77.85, -77.84, -77.86)
)

fwd <- localcartesian_fwd(pts, lon0 = 166.67, lat0 = -77.85)
rev <- localcartesian_rev(fwd$x, fwd$y, fwd$z, lon0 = 166.67, lat0 = -77.85)

max(abs(rev$lon - pts[,1]))
#> [1] 0
max(abs(rev$lat - pts[,2]))
#> [1] 0

Robotics/Navigation Application

# Robot path planning at Davis Station
davis <- c(77.85, -67.60)

# Waypoints for a robot traverse
waypoints_enu <- data.frame(
  name = c("Start", "WP1", "WP2", "WP3", "End"),
  x = c(0, 100, 200, 250, 300),    # East (meters)
  y = c(0, 50, 100, 100, 150),     # North (meters)
  z = c(0, 0, 0, 0, 0)             # Up (meters)
)

# Convert to geographic coordinates for GPS navigation
result <- localcartesian_rev(
  waypoints_enu$x, waypoints_enu$y, waypoints_enu$z,
  lon0 = davis[1], lat0 = davis[2]
)

data.frame(
  waypoint = waypoints_enu$name,
  lon = round(result$lon, 6),
  lat = round(result$lat, 6)
)
#>   waypoint      lon       lat
#> 1    Start 77.85000 -67.60000
#> 2      WP1 77.85235 -67.59955
#> 3      WP2 77.85470 -67.59910
#> 4      WP3 77.85588 -67.59910
#> 5      End 77.85705 -67.59865

WGS84 Ellipsoid Properties

The WGS84 ellipsoid is the reference surface for GPS and most modern mapping.

Basic Parameters

ellipsoid_params()
#> $a
#> [1] 6378137
#> 
#> $f
#> [1] 0.003352811
#> 
#> $b
#> [1] 6356752
#> 
#> $e2
#> [1] 0.00669438
#> 
#> $ep2
#> [1] 0.006739497
#> 
#> $n
#> [1] 0.00167922
#> 
#> $area
#> [1] 5.100656e+14
#> 
#> $volume
#> [1] 1.083207e+21

Key parameters: - a: Semi-major axis (equatorial radius) ≈ 6,378,137 m - b: Semi-minor axis (polar radius) ≈ 6,356,752 m - f: Flattening ≈ 1/298.257 - e2: First eccentricity squared - area: Total surface area - volume: Total volume

Earth’s Shape

params <- ellipsoid_params()

# Equatorial vs polar radius difference
equatorial_radius <- params$a
polar_radius <- params$b

cat("Equatorial radius:", equatorial_radius, "m\n")
#> Equatorial radius: 6378137 m
cat("Polar radius:", polar_radius, "m\n")
#> Polar radius: 6356752 m
cat("Difference:", equatorial_radius - polar_radius, "m\n")
#> Difference: 21384.69 m
cat("Flattening:", 1/params$f, "(1/f)\n")
#> Flattening: 298.2572 (1/f)

Radii of Curvature

The Earth’s curvature varies with latitude:

# Curvature at various latitudes
lats <- c(0, -33.87, -42.88, -67.60, -77.85, -90)
names_lat <- c("Equator", "Sydney", "Hobart", "Davis", "McMurdo", "South Pole")

result <- ellipsoid_curvature(lats)

data.frame(
  location = names_lat,
  latitude = lats,
  meridional_km = round(result$meridional / 1000, 2),
  transverse_km = round(result$transverse / 1000, 2)
)
#>     location latitude meridional_km transverse_km
#> 1    Equator     0.00       6335.44       6378.14
#> 2     Sydney   -33.87       6355.25       6384.78
#> 3     Hobart   -42.88       6365.01       6388.05
#> 4      Davis   -67.60       6390.21       6396.46
#> 5    McMurdo   -77.85       6396.73       6398.64
#> 6 South Pole   -90.00       6399.59       6399.59

Circle of Latitude Properties

# Properties of circles at different latitudes
lats <- c(0, -30, -45, -60, -75, -90)

result <- ellipsoid_circle(lats)

data.frame(
  latitude = lats,
  circle_radius_km = round(result$radius / 1000, 2),
  meridian_dist_km = round(result$meridian_distance / 1000, 2)
)
#>   latitude circle_radius_km meridian_dist_km
#> 1        0          6378.14             0.00
#> 2      -30          5528.26         -3320.11
#> 3      -45          4517.59         -4984.94
#> 4      -60          3197.10         -6654.07
#> 5      -75          1655.96         -8326.94
#> 6      -90             0.00        -10001.97

Auxiliary Latitudes

For advanced geodetic calculations, various auxiliary latitudes are used:

# Compare different latitude types at 45°S
lats <- c(0, -30, -45, -60, -90)

result <- ellipsoid_latitudes(lats)
result
#>   lat parametric geocentric rectifying  authalic conformal isometric
#> 1   0    0.00000    0.00000    0.00000   0.00000   0.00000   0.00000
#> 2 -30  -29.91675  -29.83364  -29.87515 -29.88900 -29.83368 -31.28104
#> 3 -45  -44.90379  -44.80758  -44.85568 -44.87170 -44.80768 -50.22747
#> 4 -60  -59.91661  -59.83308  -59.87489 -59.88879 -59.83322 -75.12340
#> 5 -90  -90.00000  -90.00000  -90.00000 -90.00000 -90.00000      -Inf

# The differences are small but matter for precise calculations

Combining Coordinate Systems

GNSS Data Processing

# Typical GNSS workflow:
# 1. Receive ECEF coordinates from GPS
# 2. Convert to geodetic (lat/lon/height)
# 3. Convert to local for navigation

# Example GPS receiver data (ECEF, meters)
gps_ecef <- data.frame(
  time = 1:5,
  X = c(4648241, 4648242, 4648240, 4648243, 4648241),
  Y = c(-2560342, -2560340, -2560343, -2560341, -2560342),
  Z = c(-3526276, -3526275, -3526277, -3526274, -3526276)
)

# Convert to geodetic
geodetic <- geocentric_rev(gps_ecef$X, gps_ecef$Y, gps_ecef$Z)

# Convert to local (relative to first point)
local <- localcartesian_fwd(
  cbind(geodetic$lon, geodetic$lat),
  lon0 = geodetic$lon[1], lat0 = geodetic$lat[1], h0 = geodetic$h[1],
  h = geodetic$h
)

data.frame(
  time = gps_ecef$time,
  east_m = round(local$x, 2),
  north_m = round(local$y, 2),
  up_m = round(local$z, 2)
)
#>   time east_m north_m  up_m
#> 1    1   0.00    0.00  0.00
#> 2    2   2.23    0.78 -0.63
#> 3    3  -1.36   -1.05  0.23
#> 4    4   1.84    2.37 -0.06
#> 5    5   0.00    0.00  0.00

Antarctic Field Survey

# Simulated survey data at McMurdo
mcmurdo <- c(166.67, -77.85, 10)  # lon, lat, height

# Survey points in local coordinates
survey_local <- data.frame(
  point = c("Control", "P1", "P2", "P3", "P4"),
  east = c(0, 500, -300, 200, -100),
  north = c(0, 200, 400, -150, -300),
  up = c(0, 5, -2, 8, -5)
)

# Convert to geodetic for GPS upload
geodetic <- localcartesian_rev(
  survey_local$east, survey_local$north, survey_local$up,
  lon0 = mcmurdo[1], lat0 = mcmurdo[2], h0 = mcmurdo[3]
)

# Convert to ECEF for satellite positioning
ecef <- geocentric_fwd(
  cbind(geodetic$lon, geodetic$lat),
  h = geodetic$h
)

data.frame(
  point = survey_local$point,
  lon = round(geodetic$lon, 5),
  lat = round(geodetic$lat, 5),
  X = round(ecef$X),
  Y = round(ecef$Y),
  Z = round(ecef$Z)
)
#>     point      lon       lat        X      Y        Z
#> 1 Control 166.6700 -77.85000 -1310451 310502 -6213443
#> 2      P1 166.6913 -77.84821 -1310758 310061 -6213406
#> 3      P2 166.6572 -77.84642 -1310762 310884 -6213357
#> 4      P3 166.6785 -77.85134 -1310357 310274 -6213482
#> 5      P4 166.6657 -77.85269 -1310142 310532 -6213501

Coordinate System Summary

System Description Use Case
Geodetic (lon/lat/h) Geographic coordinates Maps, GIS, human communication
ECEF (X/Y/Z) Earth-centered Cartesian GPS satellites, orbit calculations
ENU (E/N/U) Local tangent plane Robotics, local surveys, navigation

See Also