Create the Tissot Indicatrix.

tissot(
  lambda,
  phi = NULL,
  degrees = TRUE,
  A = 6378137,
  f.inv = 298.257223563,
  ...,
  proj.in,
  proj.out
)

Arguments

lambda

longitude

phi

latitude

degrees

logical, work in degrees or radians

A

ellipsoidal semi-major axis (meters)

f.inv

the inverse flattening

...

passed to internal function

proj.in

projection of input

proj.out

projection of context

Value

list with stuff as per below

Details

Compute properties of scale distortion and Tissot's indicatrix at location x = c(lambda, phi) using prj as the projection. A is the ellipsoidal semi-major axis (in meters) and f.inv is the inverse flattening. The projection must return a vector (x, y) when given a vector (lambda, phi). (Not vectorized.) Optional arguments ... are passed to prj. Source: Snyder pp 20-26 (WGS 84 defaults for the ellipsoidal parameters). All input and output angles are in degrees.

Examples

x <- seq(-175, 175, by = 15) y <- seq(-82.5, 82.5, by = 15) xy <- expand.grid(x, y) r <- tissot(xy, proj.in= "OGC:CRS84", proj.out= "+proj=robin") j <- which.min(abs(135 - r$lon) + abs(54 - r$lat)) idx0 <- indicatrix0(r[j, ], scale=10^4, n=71) op <- par(mfrow = c(2, 1)) plot(idx0, add = FALSE) idx <- indicatrix(r, scale=3e5, n=71) plot(idx, add = FALSE)
tissot_abline(r$lon[j], r$lat[j])
#> assuming WGS84 for unprojected angular coordinates
par(op)